

CARBONO TOTAL E ABUNDÂNCIA NATURAL DO 13C EM SOLO SOB SISTEMA PECUÁRIA-FLORESTA NO MÉDIO VALE PARAÍBA DO SUL EM VALENÇA-RJ

XIII CONGRESSO BRASILEIRO DE SISTEMAS AGROFLORESTAIS, 13ª edição, de 26/08/2024 a 30/08/2024 ISBN dos Anais: 978-65-5465-112-7

SOUZA; Luciana Rodrigues 1, BATISTA; Rodrigo N.S. 2, DONAGEMMA; Guilherme K. 3, MARTINS; Carlos Eugênio ⁴, MÜLLER; Marcelo ⁵, BARROS; Inacio de ⁶, STRALIOTTO; Rosangela 7, BALIEIRO; Fabiano de Carvalho 8

RESUMO

CARBONO TOTAL E ABUNDÂNCIA NATURAL DO 13C EM SOLO SOB SISTEMA PECUÁRIA-FLORESTA NO MÉDIO VALE PARAÍBA DO SUL EM VALENÇA-RJ

Luciana R. Souza¹; Rodrigo N.S. Batista²; Guilherme K. Donagemma³; Carlos Eugênio Martins⁴; Marcelo Müller⁴; Inacio de Barros⁴; Rosangela Straliotto³; Fabiano de Carvalho Balieiro^{4,};

1. Programa de Pós-Graduação em Ciências Ambientais e Florestais, da UFRRJ, agronomalucianasouza@gmail.com; 2. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, rodrigo.nogueiras@hotmail.com; 3. Embrapa Solos, guilherme.donagemma@embrapa.br; ademir.fontana@embrapa.br; rosangela.straliotto@embrapa.br; fabiano.balieiro@embrapa.br; 4. Embrapa Gado de Leite, marcelo.muller@embrapa.br; carlos.martins@embrapa.br; inacio.barros@embrapa.br

Resumo: Solos sob pastagens arborizadas podem prover mais serviços ecossistêmicos que pastagens em monocultivo. Neste trabalho foram avaliados dois protótipos de sistemas integrados pecuária-floresta em duas densidades de plantio (100 e 200 árvores/hectare) como alternativas ao manejo de pastagens extensivas da região Centro-Sul fluminense, visando avaliar o acúmulo de carbono total e a qualidade desse carbono através do 13C, em diferentes distâncias do tronco nos sistemas integrados pecuária-floresta. Amostras de solo foram coletadas a 3 distâncias do tronco das árvores (R: renque, B: borda e ER: entre renque), 3 profundidades (0-10, 10-20 e 20-40 cm), nos dois protótipos, e analisadas quanto aos teores de C total pelo analisador elementar e abundância do ¹³C. Após 3 anos de desenvolvimento é possível verificar maiores teores de C na borda (projeção da copa) de ambos os protótipos, com superioridade daquele com menor densidade de plantio

(100 árvores/ha) (essa diferença chega a 20% na camada de 20-40cm). Os dados de δ 13 C corroboram a estratificação das raízes das espécies na borda e maior complementaridade na ocupação da camada de 20-40cm). Os sinais isotópicos do ¹³C da matéria orgânica do solo indicam maior contribuição das gramíneas neste local.

Introdução

¹ Programa de Pós-Graduação em Ciências Ambientais e Florestais, da UFRRJ, agronomalucianasouza@gmail.com

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, rodrigo nogueiras@hotmail.com

 ³ Embrapa Solos, guilherme.donagemma@embrapa.br
 ⁴ Embrapa Gado de Leite, carlos.martins@embrapa.br

Embrapa Gado de Leite, marcelo.muller@embrapa.bi 6 Embrapa Gado de Leite, inacio,barros@embrapa,bi

Embrapa Solos, rosangela.straliotto@embrapa.br

⁸ Embrapa Solos, fabiano.balieiro@embrapa.b

Aumentar impactos positivos do uso da terra na natureza, como o incremento do seguestro de carbono em solos, a diversificação das culturas, a diminuição dos aportes de fertilizantes e insumos sintéticos ou mesmo mitigação dos efeitos negativos da erosão fazem parte de várias agendas nacionais e internacionais quando assunto é desenvolvimento, segurança alimentar e hídrica (FOLU, 2019; VISÃO 2030-2050, 2019).

Sistemas produtivos agropecuários têm sua qualidade ambiental ampliada quando árvores estão presentes na paisagem, pois estas amenizam as manifestações das mudanças climáticas (MC), como as ondas de calor, as secas e inundações decorrentes de eventos extremos de chuvas, entre outros. Além disso, embora vulneráveis às MC, estes sistemas têm potencial elevado de mitigação do aquecimento global via sequestro de C pelo solo ao ampliar o suprimento de energia renovável à sociedade, via biomassa produzida (madeira) e estocagem de C abaixo da superfície do solo.

O solo é um ativo natural, com potencial imenso de oferta de bens e serviços diversos à sociedade. Além da provisão de alimento e madeira, o solo é capaz de participar da regulação hídrica, da conservação da biodiversidade, da filtração da água e depuração de dejetos, e de armazenar quantidades significativas de C (DOMINATI et al., 2010).

Este estudo pretende contribuir para quantificação dos benefícios do componente arbórea ao sequestro de C de solos sob pastagens em uma região carente de exemplos exitosos de manejo de pastagens. Foco é dado ao protótipo de sistema de produção que mais beneficia o acúmulo de C do solo e, por conseguinte, o serviço ecossistêmico do solo de sequestro de C no Médio Vale Paraíba do Sul, região importante também na questão de segurança hídrica do Rio de Janeiro.

Material e métodos

O experimento foi implantado no Campo Experimental Fazenda Santa Mônica, de propriedade da Embrapa Gado de Leite, em Valença, RJ (22º21'S e 43º42'W; 364 m acima do nível do mar). A região é montanhosa, caracterizada pela nomenclatura regional "Mares de Morros" (AbSaber, 2007). O solo da área experimental foi classificado como Argissolo Amarelo textura argilosa, e tem como histórico o pastejo esporádico de bovinos leiteiro por mais de 30 anos. O clima da região, de acordo com a classificação de Köppen (1938), foi identificado como Cwa, clima típico da região sudeste do Brasil, caracterizado pelo inverno seco e verão chuvoso.

O sistema integrado pecuária-floresta (iPF) foi implantado em novembro de 2019, com dois protótipos, ambos com renques de árvores distantes de 25m, espaçamento entre árvores dentro do renque de 2 e 4m (protótipos), totalizando 200 (IPF200) e 100 (IPF100) árvores por hectare, respectivamente. Três morros representam os três blocos do delineamento experimental (Figura

A coleta de solo se deu nos terços superior, médio e inferior das encostas, em dezembro de 2022 e janeiro de 2023, entre o 35º e 40º meses de idade do plantio, descartando os renques superior e inferior de cada bloco. Em cada terço foram coletadas amostras compostas (3 simples) nas profundidades de 0-10cm, 10-20cm e 20-40cm e em três distâncias dos troncos (rengue, borda (cerca de 2,0 m do renque e no entre renque, a cerca de 7,5m de distância dos renques adjacentes) (Figura 1). As amostras foram secas ao ar, peneiradas a 2mm e acondicionadas em sacos plásticos. Para fins de análise química e isotópica as subamostras foram finamente moídas com auxílio de pistilo e gral, até textura de talco. Posteriormente foram encaminhadas para Laboratório de Biotransformação de Carbono e Nitrogênio (LABCEN) da Universidade Federal de Santa Maria (UFSM), Santa Maria/RS para determinação do C total (g kg-1) pelo analisador elementar e da abundância natural do ¹³C (em ‰). A abundância de ¹³C nas amostras de solo é expressa como δ^{13} C, que é uma medida que se refere a um padrão expresso em partes por mil: (amostra 13 C/ 12 C - padrão 13 C/ 12 C) δ^{13} C (‰) = x 1.000. O padrão internacional é V-PDB (Vienna-Pee Dee Belemite).

¹ Programa de Pós-Graduação em Ciências Ambientais e Florestais, da UFRRJ, agronomalucianasouza@gmail.com

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, rodrigo.nogueiras@hotmail.com

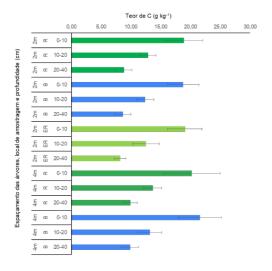
 ³ Embrapa Solos, guilherme.donagemma@embrapa.br
 ⁴ Embrapa Gado de Leite, carlos.martins@embrapa.br

Embrapa Gado de Leite, marcelo.muller@embrapa.bi 6 Embrapa Gado de Leite, inacio,barros@embrapa,b

Embrapa Solos, rosangela.straliotto@embrapa.br

⁸ Embrapa Solos, fabiano.balieiro@embrapa.b

Figura 1. Vista geral do experimento (a) e dos locais de coleta de amostras de solo (R: renque; B: borda e ER: entre renque) - Crédito Fabiano de Carvalho Balieiro, Embrapa Solos.


As interpretações dos dados foram feitas a partir do valor médio e desvio-padrão respectivo do local e profundidade de coleta, independente dos blocos e terços amostrado. Os valores de δ 13 C da matéria orgânica do solo foram discutidos a luz do que a literatura cita para espécies de plantas superiores, que variam de -22 a -33 ‰ em plantas C₃ a -9 a -16 ‰ em plantas C₄ (Deines, 1980).

Na ocasião, a ocupação do site pelo componente florestal (dada pela área basal por

hectare) em cada protótipo foi de 1,6 a 2,2 m²/ha no protótipo menos denso (25 x 4m, 100 árvores/ha) e 3,13 a 4,2 m²/ha no protótipo mais denso (25 x 2m, 200 árvores/ha).

Resultados e discussão

Os teores de C (g kg⁻¹) do solo são considerados médios a altos, corroborando com o histórico de uso da área, com pastagem bem formada, e com baixa taxa de lotação. Os teores são decrescentes em profundidade, para todos os locais de amostragem, como esperado, dado o aporte preferencial de matéria orgânica (MO) via serapilheira, rizodeposição e atividade microbiana. Utilizando apenas o desvio-padrão como balizador das diferenças dos teores entre os locais de amostragem, assim como a diferença entre os protótipos em estudo (2m e 4m entre árvores) não são observadas grandes diferenças. Porém, para todas as profundidades e no protótipo IPF100, os teores de C total foram superiores a 8 e 12% nas linhas e na borda de plantio do eucalipto, comparativamente ao IPF200. Além disso, comparando os valores de C total deste protótipo em relação aos valores de C do entre renque, representado por aportes exclusivos das gramíneas, os teores foram 12% superiores para as profundidades, e 21% superior na profundidade 20-40 cm. Ou seja, quando plantado em renques simples, plantas de eucalipto espaçadas a 4m (IPF100) permitem que o espaço subterrâneo seja melhor explorado pelas raízes do eucalipto e da braquiária e os efeitos sobre a microbiota mais pronunciados isso está associado ao carbono amarrar aqui pois não mediu nenhum indicador da microbiota, especialmente na projeção da copa das árvores (borda). Parte deste efeito é da umidade superior do solo nas camadas amostras (dados não apresentados).

¹ Programa de Pós-Graduação em Ciências Ambientais e Florestais, da UFRRJ, agronomalucianasouza@gmail.com

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, rodrigo.nogueiras@hotmail.com

 ³ Embrapa Solos, guilherme.donagemma@embrapa.br
 ⁴ Embrapa Gado de Leite, carlos.martins@embrapa.br

Embrapa Gado de Leite, marcelo.muller@embrapa.bi 6 Embrapa Gado de Leite, inacio,barros@embrapa,bi

Embrapa Solos, rosangela.straliotto@embrapa.br

⁸ Embrapa Solos, fabiano.balieiro@embrapa.b

Figura 1. Teor médio ± desvio-padrão de C (g kg -1) em Argissolo Amarelo textura argilosa sob sistema integração pecuária-floresta, em Valença, RJ. Espaçamento das árvores dentro do renque (2 e 4m); R: renque de plantas de eucalipto; B: borda do renque, a 2 m do renque e ER: entre renque, cerca de 7-8 m do renque.

A abundância natural do δ^{13} C do C das amostras corrobora com o histórico de uso da área, com valores na camada superficial (0-20cm), com predomínio de matéria orgânica oriunda de plantas do ciclo C₄ (Tabela 1).

Uma mistura de resíduos de plantas do ciclo C3 (vegetação nativa ou outra cultura do plantada pretérita e do eucalipto) e das gramíneas fica mais evidente quando se observa os valores de $\delta^{13}C$ da camada mais profunda. Embora não tenha sido confirmado com análise estatística, há uma tendência do espaçamento mais amplo do eucalipto (4m) nos renques de árvores favorecem o crescimento das gramíneas em subsuperfície, em razão da maior entrada de luz e menor competição com as raízes do eucalipto comparado com 2 m, já que os sinais isotópicos são menos negativos para as camadas de 10-20 e 20-40 cm, indicando maior contribuição da rizodeposição de plantas C₄, nas camadas.

Tabela 1. Abundância natural do δ^{13} C (‰) em Argissolo Amarelo (profundidades 0-10, 10-20 e 20-40cm) sob sistema pecuária-floresta com árvores espaçadas de 2 e 4m, dentro do renque e

renques espaçados de 15m. Espaçamento entre árvores

de plantio

Densidade

(árv/ha)

Local

Profundidade (cm)

δ13C (‰)

2_m

Renque

0-10

-15,455

2_m

Renaue

10-20

-16,065

2m

Renque

20-40

-19,592

2m

¹ Programa de Pós-Graduação em Ciências Ambientais e Florestais, da UFRRJ, agronomalucianasouza@gmail.com

² Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, rodrigo.nogueiras@hotmail.com

 ³ Embrapa Solos, guilherme.donagemma@embrapa.br
 ⁴ Embrapa Gado de Leite, carlos.martins@embrapa.br

Embrapa Gado de Leite, marcelo.muller@embrapa.br
 Embrapa Gado de Leite, inacio.barros@embrapa.br
 Embrapa Solos, rosangela.straliotto@embrapa.br

⁸ Embrapa Solos, fabiano.balieiro@embrapa.b

Borda	
0-10	
-15,786	
2m	
200	
Borda	
10-20	
-16,649	
2m	
Borda	
20-40	
-19,636	
2m	
Entre renque	
0-10	
-14,965	
2m	
Entre renque	
10-20	
-16,140	
2m	
Entre renque	
20-40	
-19,582	
4m	
Renque	
0-10	
-15,431	
4m	
Renque	

10-20 -16,303

Programa de Pós-Graduação em Ciências Ambientais e Florestais, da UFRRJ, agronomalucianasouza@gmail.com
 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, rodrigo.nogueiras@hotmail.com
 Embrapa Solos, guilherme.donagemma@embrapa.br
 Embrapa Gado de Leite, carlos.martins@embrapa.br
 Embrapa Gado de Leite, marcelo.muller@embrapa.br
 Embrapa Gado de Leite, inacio.barros@embrapa.br
 Embrapa Solos, rosangela.straliotto@embrapa.br
 Embrapa Solos, fosangela.straliotto@embrapa.br
 Embrapa Solos, fosangela.straliotto@embrapa.br

Renaue

20-40

-19,048

4m

100

Borda

0-10

-14,691

4m

Borda

10-20

-15,882

4m

Borda

20-40

-18,255

Conclusões

Apesar do experimento estar com apenas 3 anos de implantação, fica evidente o impacto positivo sobre os teores de C total do solo das pastagens, em especial na camada de 20-40cm, em que as plantas de eucalipto são plantadas a 4m de distância (com densidade de 100 plantas/hectare) dentro dos renques. Os sinais isotópicos do 13C da matéria orgânica do solo indicam maior contribuição das gramíneas neste local.

Agradecimentos

Aos técnicos da Fazenda Santa Mônica (Embrapa Gado de Leite) pela ajuda inestimável em campo. Ao CNPq pela Bolsa de Produtividade de FCB (processo: 307434/2020-6). A FAPERI, pelos recursos financeiros ao projeto Indicadores de qualidade do solo e de forragem em pastagens sob diferentes níveis de degradação no Médio Vale Paraíba do Sul (n. 20.18.03.040.00.02.000); idem a Rede ILPF (Projeto: Sistema de ILPF na região de Mar de Morros do Sudeste brasileiro: alternativa de utilização intensiva e sustentável das terras de relevo montanhoso/movimentado sob influência da Mata Atlântica-Fase 2, n. 20.22.06.007.00.00) e a Embrapa, por auxílios diversos à condução dos trabalhos.

Referências bibliográficas

AB´SABER, A.N Os domínios de natureza no Brasil: potencialidades paisagísticas. São Paulo: Ateliê Editorial, 2007, 151p.

DOMINATI, E.J., PATTERSON, M.G., MACKAY, A.D. 2010 . A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics 69: 1858-1868.

¹ Programa de Pós-Graduação em Ciências Ambientais e Florestais, da UFRRJ, agronomalucianasouza@gmail.com

² Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, rodrigo.nogueiras@hotmail.com

 ³ Embrapa Solos, guilherme.donagemma@embrapa.br
 ⁴ Embrapa Gado de Leite, carlos.martins@embrapa.br

Embrapa Gado de Leite, marcelo.muller@embrapa.br
 Embrapa Gado de Leite, inacio.barros@embrapa.br
 Embrapa Solos, rosangela.straliotto@embrapa.br

⁸ Embrapa Solos, fabiano.balieiro@embrapa.b

FOLU, 2019, Growing Better, op. cit.; and Terra Genesis International, 2020, "Regenerative Agriculture", http://www. regenerativeagriculturede nition.com/

Visão 2030-2050: O Futuro das Florestas e da Agricultura no Brasil. Coalisão Brasil, clima, florestas e agricultura. 42 p, 2019.

PALAVRAS-CHAVE: Manejo de pastagens, Pecuária floresta, Estoque de carbono

¹ Programa de Pós-Graduação em Ciências Ambientais e Florestais, da UFRRJ, agronomalucianasouza@gmail.com
2 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, rodrigo.nogueiras@hotmail.com
3 Embrapa Solos, guilherme.donagemma@embrapa.br
4 Embrapa Gado de Leite, carlos.martins@embrapa.br
5 Embrapa Gado de Leite, marcelo.muller@embrapa.br
6 Embrapa Gado de Leite, inacio.barros@embrapa.br
7 Embrapa Solos, rosangela.straliotto@embrapa.br
8 Embrapa Solos, fosangela.straliotto@embrapa.br