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Resumo 
A energia eólica está cada vez mais participando da matriz energética dos países como uma fonte alternativa 
de energia sustentável. Parques eólicos são a forma racional de gerar este tipo de energia e o Brasil é um 
país que tem um grande potencial para ser explorado. Neste trabalho, o layout de parques eólicos é 
otimizado de forma a maximizar a produção energética que depende das condições de vento da região onde 
está instalado o empreendimento, bem como o número de aerogeradores disponíveis e os limites 
geográficos para instalação dos mesmos. A otimização é baseada em um algoritmo metaheurístico, QPSO, 
uma vez que, em geral, o posicionamento dos aerogeradores não pode ser feito de forma contínua, mas de 
forma discreta em função de distâncias mínimas recomendadas entre as torres. O algoritmo QPSO é testado 
em uma avaliação nomeada pela literatura como Caso Ideal. A função objetivo do problema é alcançar o 
aumento da eficiência em geração energética decorrente dos micrositings para realizar uma comparação 
com os resultados relatados na literatura. Para o caso avaliado, o QPSO foi capaz de encontrar soluções 
mais eficientes que outras abordagens, mesmo com maior dispersão entre todas soluções possíveis varridas 
durante o processo iterativo. 
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Abstract  
Wind energy is increasingly participating in the energy matrix of countries as an alternative source of 
sustainable energy. Wind farms are the rational way to generate this type of energy and Brazil is a country 
that has great potential to be explored. In this work, the layout of wind farms is optimized to maximize the 
energy production that depends on the wind conditions of the region where the project is located, as well 
as the number of wind turbines available and the geographic limits for their installation. The optimization 
is based on a metaheuristic algorithm, QPSO, since in general the positioning of the wind towers can’t be 
done continuously, but discretely due to the minimum recommended distances between the towers. The 
QPSO algorithm is tested in an evaluation named in the literature as an Ideal Case. The objective function 
of the problem is to achieve the increase in efficiency of generated energy resulting from the microsites to 
make a comparison with results obtained from the literature. For the evaluated case, the QPSO was able to 
find more efficient solutions than other approaches, even with greater dispersion among all possible 
solutions searched during the iterative process. 
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1. INTRODUCTION 

 
Wind power generation is taking its place every day in the energy matrix of countries. 

Together with solar energy and energy obtained by biofuels, it is an important source of renewable 
energy. The wind is a resource that is available to virtually all countries, some of which have more 
favorable conditions for their exploration from wind farms (whether on land or offshore, at sea 
and away from the coast). An important indicative factor of wind power generation potential is the 
so-called Capacity Factor, which is the ratio between effective production over some time and 
maximum total capacity in the same period. In northeastern Brazil, this factor reached levels close 
to 83%, indicating the good use of wind in wind farms installed in this region (ABEEólica, 2017).  

This factor is related to local climatic conditions but is also due to the performance of the 
installed turbines and the optimized design of the arrangement of wind turbines in the enterprise. 
This provision, also known as a micrositing, may minimize the recurrent problem of the interaction 
between turbulence streams generated by windward towers with the loss of efficiency of 
windward-positioned towers. This is a complex problem, since there is seasonality and uncertainty 
about the intensity of the winds and their direction, being a more desirable provision than another 
in terms of average energy generation.  

In this sense, the main objective of this work is the development of a source code for the 
modeling and evaluation of wind farms layouts, in order to take into account important information 
such as terrain roughness, wind turbine rotor height, statistical data on annual wind direction and 
intensity. Using the MATLAB software (2000), a metaheuristic algorithm was proposed to 
optimize the arrangement of wind turbines in wind farms to increase the electricity produced and, 
therefore, the energy efficiency of the enterprise. Constraints on the minimum distance between 
wind turbines, as well as the number of wind turbines and the interaction effects between 
turbulence streams, were used in the optimization, being the code later validated by an example 
widely reported in the literature. 

The paper is divided as follows: first, a brief introduction is made about the metaheuristic 
approach used. Then, the presentation of some concepts considered in the modeling is made, as 
well as the presentation of the analyzed case. Finally, the results obtained in the analyzes and the 
respective conclusions that can be drawn from them are presented. 

 
2. QUANTUM BEHAVIOR PARTICLE SWARM OPTIMIZATION ALGORITHM 

(QPSO) 

According to Sun et al. (2012), QPSO is an important evolution of the PSO metaheuristic 
algorithm motivated by quantum particle mechanics. Unlike PSO, it does not require velocity 
vectors and has fewer parameters to adjust, thus facilitating its implementation. The algorithm uses 
a strategy in which it benefits from its previous optimal positions and receives help from the best 
average position of all particles to improve the overall search capability of the solution, as a swarm 
particle always has a non-zero probability of being able to find itself in any position (𝒙) of the 
entire search space feasible, even in a position far from the best global position. This allows the 
possibility of increased demand in the search space. In addition, the state of each particle can be 
described by a wave function 𝛹(𝒙) and the probability of finding the particle in a given position 
can be described by the probability density function 𝑄(𝒙), defined as:  
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where p is a random variable expressed by Equation 4. The 𝐿 parameter characterizes the 
"creativity" or "imagination" of the particle, described by Equation 5. 

Given one of the probability density functions, using the Monte Carlo Stochastic simulation 
method, the particle position can be obtained by the following stochastic equation: 
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𝒑 = 𝜑𝑷 + (1 − 𝜑)𝑮, 𝜑~𝑈(0,1) 
(4) 

𝑳 = 2𝛼|𝒙 − 𝒎𝒃𝒆𝒔𝒕| 
(5) 

where 𝑷 represents the best experience (design variables of the corresponding best objective 
function) of the particle and 𝑮 represents the average of the best experiences of all the particles of 
the swarm. The parameter α is known as the expansion-contraction coefficient. 𝒎𝒃𝒆𝒔𝒕 is the 
average of the best position of each particle in the swarm of 𝑁௉ individuals that can be expressed 
as follows: 
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To sum up, the algorithm initializes with the generation of a random population of particles 
and lists the best particle as a function of the objective of the problem. With each new iteration, 
the best average position of the swarm is calculated and the current position of each particle is 
updated. After this process is carried out by, all particles of the problem, the value of each particle 
(objective function) is evaluated, and created a history of the best individual positions and the best 
current global position of the swarm. The process is continued until some convergence or stopping 
criteria are reached. 
 
3. NUMERICAL EXPERIMENT 

 
3.1. Problem Formulation: Wind and wake modeling 

According to Custódio (2013), wind speed varies along the day, month and year. Therefore, 
its variation is the main characteristic to be determined, and so the existing probabilistic 
distribution that best describes this behavior is the Weibull distribution due to its flexibility to be 
able to adapt to various forms of experimental data. The Weibull probability density function for 
wind velocity  V is expressed by the following: 
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where 𝑓(𝑉) is the frequency of occurrence of 𝑉, 𝑐 is the form factor of the Weibull distribution 
and 𝛤 is the Gamma function, defined by: 
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 (9) 

In the vast majority of cases, the conditions of speed and direction of wind incidence in 
wind farms are not obtained exactly at the height of the wind turbine rotor. In addition, the 
technological advance used in the construction of these equipment causes a trend in the increase 
in the height of wind turbines, which can make it impossible to capture meteorological data at the 
same height. Still according to Custódio (2013), in the range of height of interest for conversion 
of wind energy, a behavior of variation of wind speeds is observed that can be approximated by a 
logarithmic function. In this way, the way to predict wind speed at a certain height, more 
specifically at the height of the wind turbine rotor is: 

 𝑉଴ = 𝑉 ∙
௟௡(ு/௭బ)

௟௡൫ுೝ೐೑/௭బ൯
 , (10) 

where 𝑉଴ is the wind speed at the desired height, 𝑉 is the wind speed at the measuring height, 𝐻 is 
the height where you want to know the wind speed (wind turbine rotor), 𝐻௥௘௙ is the reference 
height where the wind speed was measured and 𝑧଴ is the equivalent roughness length of the terrain 
in question. 

3.1.1. Modelling the interactions between aerodynamic wakes 

According to Custódio (2013), the extraction of kinetic energy from the wind by an wind 
turbine causes a reduction in the speed of the air masses. In addition,  turning of the turbine blades, 
increases the turbulence in the airflow after interaction with this structure. From this, a subsequent 
wind turbine that receives disturbed wind tends to extract less energy. This effect is known as an 
aerodynamic stream and, if not minimized, has a great impact on the total production of the wind 
farm. 

Jensen et al. (1986), proposed a simplified model of track effect that describes the behavior 
of outlet air flow of wind turbines considering the characteristics of the wind turbine. This 
modeling can estimate wind energy after iteration accurately since it assumes that the velocity 
drops linearly in the direction of wind flow and that the amount of motion is conserved within the 
aerodynamic stream. Figure 1 indicates the main parameters considered in this modeling. The 
speed 𝑉(𝑥) for any position on the turbine stream is given by: 

𝑉(𝑥) = 𝑈 ൥1 −
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where 𝑉(𝑥) represents wind speed on the wind turbine of a wind turbine, U is the free wind 
speed of influence turbine, 𝑈௥ is the wind speed right after the rotor extracts some of its kinetic 
energy. 

 



 
 

 

Figura 1: Schematic view of Jensen wake model. 

The parameter 𝐶௧ is the thrust coefficient of the turbine. Variable 𝐷 is the diameter of the turbine 
rotor and 𝐷ௐ the diameter of the track at a distance 𝑥 of the turbine. Factor 𝑘 represents the 
coefficient of increase of stream, or angle of shadow opening, described by: 

𝑘 = 0,5/𝑙𝑛(ℎ /𝑧଴) (12) 

where ℎ is the height of the nacelle of the wind turbine (or wind turbine rotor) and 𝑧଴ is the 
equivalent roughness length of the soil. 

3.1.2. Power production modelling  

For a given wind turbine model, the power and thrust coefficient curves depend on the 
wind speed acting on the wind turbine. This and other machine-type data are provided by the 
manufacturer and are used to calculate the energy produced by the wind farm. Since in the 
modeling of the wake effect adopted, the layout of the arrangement of the wind turbines (𝑿, 𝒀) is 
considered, as well as a given direction of incidence of the wind 𝜃௞ and its respective velocity of 
incidence on the wind farm 𝑉଴, we have that the velocity of the incident wind on the wind turbine 
𝑉௜ is a function of all these aspects. i.e., 𝑉௜ = 𝑉௜(𝑉଴, 𝜃௞ , 𝑿, 𝒀). In addition, the power generated by 
the wind farm depends heavily on the frequency of occurrence of wind speed and its direction, 
represented here as the distribution of occurrence 𝐹௪௞ = 𝑓௢௖(𝑉଴, 𝜃௞) and the Wind Rose. 
Therefore, the energy produced by the wind farm is described as: 
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where 𝑁௪ௗ and 𝑁௪௦ represent the number of divisions of the discretization in the Wind Rose the 
direction and Weibull distribution of wind speed, incidents in the wind farm, respectively. 

3.2. The Ideal Case Problem and its variation 
 

The evaluation of the proposed algorithm was based on the variation of the Ideal Case, 
proposed by Grady et al. (2005). This approach consists of the study of a wind farm with 



 
 
dimensions 50Dx50D, where D represents the diameter of the rotor of the wind turbine, where all 
available space for the enterprise was subdivided into 100 equal cells. Thus, a grid of cells is 
formed, where each location, or cell for installation has dimensions of 5Dx5D. This positioning 
grid, which had been used by all authors who evaluated these cases previously, acts to constrain 
the minimum distance between two wind turbines, that is, each turbine will be located at least at a 
distance of 5D from the nearest turbine. In addition, in this evaluation, the wind turbine can only 
be allocated in the center of each cell, which in turn further restricts the problem because it reduces 
the space available for wind turbine placements to a rectangular area with dimensions of 45Dx45D, 
given the need of 2.5D discount on each end of the initial square. In contrast to this proposal, in 
the present study, the position of each wind turbine, within the space available for positioning, was 
not restricted, that is, each wind turbine could be positioned in any location within the square of 
dimensions 45Dx45D, provided that the distance to the nearest wind turbine was greater than or 
equal to 5D. 

Although in the approach that has been used by several authors there are three weather 
conditions (wind at 12 m/s from the north direction, wind at 12 m/s uniformly distributed in 36 
directions of incidence, and wind with speeds of 8, 12, and 17 m/s uniformly distributed in 36 
directions of incidence), in this study, only the first condition is evaluated due to the need to study 
the feasibility of the QPSO in the face of this type of optimization. 

In addition, the Ideal Case, as well as its variation, evaluates the energy generated only 
with a type of wind turbine, which has a Tower height of 60 meters, rotor diameter of 80 meters, 
Thrust Coefficient of 0.88, and terrain roughness of 0.3 meters. The power curve of the wind 
turbine is displayed in Fig. 2. 

 
Figure 2: Wind turbine power curve. 

3.2.1. Numerical experiments 
 

To evaluate the QPSO algorithm given the optimization of the layout of a wind farm, one case 
where wind speed and incidence direction are constant was evaluated. After all the iterations 
required to stop the algorithm, it returned the value of the energy efficiency (objective function) 
of the best configuration. The new efficiency was compared with values in the literature and the 
percentage increase was evaluated for each situation.  

The evaluation of this case was carried out according to the proposal of Feng and Shen (2015) 
in which a layout is randomly generated for the first evaluation of the algorithm and then, after the 
end of all iterations, it processes the relative percentage comparison between the energy efficiency 
found by the new micrositings and the better energy efficiency found by Grady et al. (2005). Table 
1 below shows the comparison between the best, the average, and the worst of the increases related 



 
 
to the efficiency of Grady et al. (2005) found by the QPSO in the face of the additions found by 
the RS-new of Feng and Shen (2015), for the wind conditions with constant speed and direction 
of incidence. 

Table 1: Relative increase in efficiency compared to Grady et al. (2005). 

Algorithm Maximum (%) Average (%) Minimum (%) Standard Deviation 
RS-new (Feng and Shen (2015)) 6,35 5,92 5,48 0,33 

QPSO 8,55 7,36 5,17 0,59 

 In terms of average values, the QPSO presents a value considerably higher than that obtained 
by Feng and Shen (2015), but the variability of the efficiency increases achieved by the QPSO 
characterizes it as slightly less robust compared to RS-new. Nevertheless, it was possible to verify 
that the algorithm, as well as the metaheuristic approach, was able to evaluate the micrositing of a 
wind farm with a high number of wind turbines delivering better results than those reported in the 
literature.  

Figure 3 presents a comparison between the most efficient micrositing obtained by the QPSO 
and the most efficient ones obtained by RS-new, Feng and Shen (2015), and GA, by Grady et al. 
(2005). 

 

Figure 2: Comparison of micrositings obtained by different optimization methods for ideal case 
variation. 

It can then be seen that there was a slightly similarity between the configurations proposed 
by the QPSO and the RS-new with regard to the position of the vast majority of towers, unlike the 
GA proposal in which the towers are simply lined up. 

4. CONCLUSIONS 
 

This work was proposed to optimize the micrositing of wind farms using a metaheuristic 
approach via the QPSO algorithm. Behaviors such as the interaction of aerodynamic tracks 
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resulting from disturbances in wind flow, the distribution of wind speed probabilities and their 
directions, power curves and thrust coefficient of wind turbines as well as distance limitations 
between wind turbines and geographical limits of the wind farm area were taken into account in 
this work. 

The example of the variation of the Ideal Case, proposed by Grady et al. (2005) and composed 
of 30 wind turbines, was used to verify the codes developed in MATLAB (2000) and here 
implemented. In this case, the proposed algorithm was able to find better results of energy 
efficiency compared to values indicated in the literature, proving the efficiency of this 
metaheuristic approach in solving this type of problem. The robustness of the algorithm was 
proven from multiple independent rounds, obtaining a relatively small coefficient of variation, 
concerning the maximum values found for efficiency, but which was still higher than cases 
reported in the literature. 

Despite this, improvements in the interaction model of aerodynamic wind turbines, in addition 
to the parallelization of the algorithm, a greater discretization of anemometric data or also the 
replication of this methodology in a wind farm located in Brazil are suggestions for future work. 
Such proposals can be easily implemented, which, in turn, allows the analysis of more complex 
cases, both with a greater number of wind turbines, as well as a more complex discretization of 
wind incidence directions and terrain area limits for park installation.  
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