New analysis of the ${}^{12}C^{16}O^+$ (B² Σ^+ - X² Σ^+) system: Spin-orbit and spin-rotation coupling of the X² Σ^+ state

Ramon S. da Silva¹, Laiz R. Ventura¹, Maikel Y. Ballester², Carlos E. Fellows¹

¹Departamento de Física, Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil ²Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG,

Brazil

*email: cefellows@id.uff.br

In the present work a new experimental and theoretical analysis of the $B^2\Sigma^+$ - $X^{2}\Sigma^{+}$ system of the molecular ion ${}^{12}C^{16}O^{+}$ is performed. New transitions regarding the vibrational levels v' = 4 of the $B^2\Sigma^+$ electronic state and the vibrational level v'' = 7 of the electronic state $X^2\Sigma^+$ have been recorded. For rationalising the experimental observations, molecular structure calculations were carried out and, from them, a detailed investigation about the fine structure of rotational levels of the $X^2\Sigma^+$ could be performed. For such, the spin-rotational constant, γ , is characterised through the Δq_{\perp} calculation, the perpendicular component of the electronic q-tensor, in combination with Curl's relation. At equilibrium geometry, the present Δq_{\perp} is computed using the multireference configuration interaction wavefunction to be -2,430 ppm in agreement with the experimental one [-2,344 ppm]. The R-dependence of the g-tensor has been explored in order to estimate the theoretical χ_v (**v** = 0-7). In addition, the importance of the lowest Π states in this kind of calculation is widely discussed. A comparison between experiment and theory is presented, validating our findings and the methodology employed in our analysis.

