

SYNTHESIS OF POLYMER ELECTROLYTES IMPROVED BY THE ADDITION OF KNBO3 FOR RECHARGEABLE **BATTERIES**

VII Congresso Online Nacional de Química, 7ª edição, de 23/06/2025 a 25/06/2025 ISBN dos Anais: 978-65-5465-148-6 DOI: 10.54265/ELWQ2379

NETO; Antero Ricardo Santos 1, SOUZA; Rafael Rodrigues de 2, SANTOS; Wayler Silva dos³, RODRÍGUEZ; Mariandry Rodríguez⁴, PEREIRA; Marcio Cesar⁵, NOGUEIRA; Francisco Guilherme Esteves 6

RESUMO

Lithium-ion rechargeable batteries (LIBs), essential components of electronic devices and energy storage systems, have attracted considerable attention due to their role in improving efficiency and safety. A key component of LIBs is the electrolyte, responsible for transporting lithium ions between the positive and negative electrodes. This study aims to develop a solid polymer electrolyte (SPE) composed of lithium perchlorate (LiClO₄), polyvinyl alcohol (PVA), and polyethylene oxide (PEO), enhanced by the addition of potassium niobate (KNbO₃) to improve LIB performance. The main objective of the research is the development of polymeric solid electrolytes based on pure LiClO₄/PVA-PEO and improved by the insertion of KNbO3, to replace conventional liquid electrolytes for use in rechargeable lithium-ion batteries. Originally, KNbO₃ powders were synthesized in the laboratory from specific precursors (hydrated potassium oxalate, K2C2O4·2H2O, and niobium pentoxide, Nb_2O_5), calcined at 600°C. Subsequently, pure SPE (A = LiClO₄/PVA-PEO) and the SPE with the addition of KNbO3 (B) were synthesized. Using a digital caliper, the thickness was measured and the area of the SPE was calculated. After a one-week curing time, the dried SPE was placed between two stainless steel plates (sandwich) of the same dimensions for electrochemical analyses. Electrochemical impedance spectroscopy (EIS) and chronoamperometry tests were performed using the AUTOLAB PGSTAT 128 N potentiostat, coupled with the NOVA® 2.0.1 software copyright 2016, Metrohm Autolab B.V. X-ray diffraction (XRD) with Rietveld refinement identified two crystalline phases of KNbO3: cubic (JCPDS No. 01-083-3855) and tetragonal (JCPDS No. 01-083-3856), with a residual profile factor (S) of 1.21 and a correlation coefficient (χ^2) of 1.45, indicating good fit. Scanning Electron Microscopy (SEM) revealed a morphology of dense KNbO₃ clusters with irregular sizes, uniformly distributed in the polymer matrix. Electrochemical spectroscopy (EIS) showed a 38.78% increase in ionic conductivity after adding KNbO3 (SPE/B) compared to pure SPE (A). Combined EIS and chronoamperometry provided current densities and charge transport

¹ Universidade Federal dos Vales do Jequitinhonha e Mucuri (UF\

Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)

³ Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
4 Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
5 Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)

⁶ Universidade Federal de São Carlos (UESCar)

resistances (io, Reo and iSS, ReSS), allowing calculation of lithium transfer numbers (t⁺, $0 \le t^+ \le 1$)¹. The t⁺ increased from 0.271 (SPE/A) to 0.825 (SPE/B), while ionic conductivity (σ) reached 9.82×10⁻⁴ Ω ·cm⁻¹ at 25°C, confirming the positive impact of KNbO₃ on ion mobility. These results demonstrate that KNbO3-enhanced SPE offers superior lithium-ion transport and conductivity, representing a promising alternative to conventional liquid electrolytes in LIBs. ¹Deivanayagam, R.; Shahbazian-Yassar, R. Electrochemical methods and protocols for characterization of ceramic and polymer electrolytes for rechargeable batteries. Batteries & Supercaps. 2020, 4, 596-606. The results confirmed the successful synthesis of an SPE utilizing lithium salt, which promotes a considerable increase in ionic conductivity ($\sigma = 9.82\text{E}-04~\Omega\cdot\text{cm}^{-1}$) and lithium transfer number ($t^+ = 0.825$) at room temperature (25°C). These outcomes highlight the potential of the developed SPE, especially after the incorporation of KNbO₃, as a simple, cost-effective, and promising strategy for improving key components of rechargeable lithium-ion batteries. Acknowledgments The authors are grateful to FAPEMIG, CNPq, CAPES (code 001), and Finep (project 01.22.0271.00) for financial support and scholarships.

PALAVRAS-CHAVE: Ionic conductivity (σ), lithium perchlorate (LiClO4), lithium transfer number (t+), rechargeable LIBs, solid polymer electrolyte (SPE)

¹ Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)

² Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)

³ Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
4 Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)
5 Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)

⁶ Universidade Federal de São Carlos (UESCar)