ANÁLISE DA MACROESTRUTURA E CONDUTIVIDADE ELÉTRICA DA LIGA HIPOEUTÉTICA AL -NI TRATADA **TERMICAMENTE**

Congresso Nacional Online de Engenharia Mecânica, 1ª edição, de 11/10/2021 a 13/10/2021 ISBN dos Anais: 978-65-89908-98-2

MARQUES; Luane Luiza Pereira 1, ARAÚJO; Yan Christian Silva de 2, ESPÍNDOLA; Eric Elian Lima Espíndola 3, COSTA; Deibson Silva Da 4, MEDEIROS; Amanda Lucena de 5

RESUMO

Atualmente, com o crescimento populacional a procura por uma maior qualidade de estrutura e de produtos finais principalmente no setor energético impulsiona o meio científico no desenvolvimento de novos materiais condutores elétricos de alta e baixa tensão. O alumínio tem ganhado grande destaque dentro da energia, por possuir baixa densidade ser abundante na crosta terrestre, podendo ser reciclável tem propriedades que quando combinadas a outros metais ou semi metais o torna extremamente atraente para o setor industrial, principalmente na produção de cabos e fios de condutores de energia elétrica. O objetivo deste trabalho consiste em produzir uma liga de Al- 0,5% Ni, e revelar a macroestrutura obtida no processo de solidificação convencional, submetendo ao ensaio de condutividade elétrica, após ser tratada termicamente. Primeiramente, foi preparado o material para o vazamento do metal no molde de conquilha cilíndrica, sendo através do processo de fundição convencional . Após o desmolde e cortada uma seção da peça na qual foi preparada através de lixamento e polimento para o ataque químico com ácido keller durante determinados segundos revelando a macroestrutura do material, o restante da peça e usinada e laminado a frio até o diâmetro fosse reduzido a 3 m, usando uma laminadora semi industrial para confecção dos fios, nos quais são cortados dentro de um padrão de 60 cm , onde, e tratado termicamente a 230° C. Após, o tratamento térmico é realizado o ensaio de condutividade elétrica de acordo com NBR 5118, em três pontos do fio entre 40 cm de distância entre garras, sendo utilizado o almemo para medir a temperatura e o microhomimetro para medir a corrente elétrica. Com base nos resultados, após o processo de solidificação a revelação da macroestrutura mostra crescimento preferencialmente de grãos equiaxiais, ou seja, devido à adição d níquel na solução pode ter ocasionado a diminuição da nucleação colunar na peça. Os resultados obtidos através do ensaio de condutividade elétrica mostram que o teor adicionado não influenciou drasticamente na passagem da corrente elétrica pelo fio, obtendo os seguintes resultados, no primeiro ponto com 63,29 %, no segundo ponto 63,70 % e terceiro ponto 63,69 % IACS, ou seja, seu desempenho foi melhor no segundo ponto. Com base nas análises feitas, obteve- se resultados satisfatórios em decorrência da porcentagem de níquel adicionada e quando submetida a tratamento térmico, sendo necessário aprofundar os estudos e realizar outros ensaios tendo como base essa liga.

PALAVRAS-CHAVE: Alumínio, Vazamento, Macroestrutura, Níquel

graduanda em engenharia de materiais -UFPA, luanemarques18.lm@gmail.com graduando em engenharia de materiais -UFPA, ycsaraujo@gmail.com

³ graduando em engenharia mecânica -UFPA, ericesp53@gmail.com
4 engenheiro mecânico pela Universidade Federal do Pará . Mestre em Engenharia Mecânica pela Universidade Federal do Pará . Doutor em Engenharia de Recursos Naturais pela Universidade Federal do Pará (2009). Mestrado em Engenharia Mecânica pela Universidade Federal do Pará (2012), na área de Concentração de Materiais e Processo Materiais Compósitos. Doutorado em Engenharia de Recursos Naturais pela Universidade Federal do Pará (2016). Pós-Doutorado na área dPós-Doutor na área de materiais compósitos pela Universidade

Engenharia de Petróleo pela Universidade Federal do Rio Grande do Norte. Mestra em Ciência e Engenharia de Materiais pela Universidade Federal do Rio Grande do Norte. Doutora em Ciência e E Universidade Federal do Rio Grande do Norte., almedeiros@hotmail.com.b