ELABORAÇÃO DE FILME COMESTÍVEL UTILIZANDO AMIDO DE AÇAFRÃO PRETO (CURCUMA CAESIA R.) MODIFICADO POR FOSFATAÇÃO

8° Simpósio de Segurança Alimentar - Sistemas Alimentares e Alimentos Seguros, 8ª edição, de 03/10/2023 a 05/10/2023 ISBN dos Anais: 978-65-5465-068-7

OLIVEIRA; Aryane Ribeiro ¹, BORGES; Jenyffer Karoline Leite ², CARELI-GONDIM; Ítalo ³, RIBEIRO; Alline Emannuele Chaves ⁴, JÚNIOR; Manoel Soares ⁵, CALIARI; Márcio ⁶

RESUMO

Açafrão preto (Curcuma caesia R.), pertence à família Zingiberaceae. O rizoma amiláceo é proveniente dos países do leste asiático, muito utilizado como medicamento tradicional para doenças do estômago, do sangue, dentre outras. O rizoma é rico em curcuminóides (60%) e amido, carboidrato importante para indústria de alimentos. O mercado de amidos vem se expandindo e se aperfeiçoando, levando à busca de produtos com características específicas que atendam às exigências da indústria e dos consumidores. Deste modo, modificações químicas e físicas são largamente realizadas para que estes amidos se tornem mais adequados à fabricação de alimentos. A fosfatação consiste na introdução de grupos fosfato na cadeia do amido. Esses grupos causam o aumento do poder de inchamento, maior solubilização dos grânulos e diminui a retrogradação se comparado com o amido nativo. Também há o aumento de viscosidade do gel, característica que é de suma importância para fabricação de filmes comestíveis. Portanto, o objetivo do presente estudo foi desenvolver filmes comestíveis utilizando amido de açafrão preto modificado por fosfatação com tripolifosfato de sódio e sorbitol. Um delineamento composto central 2², com três repetições do ponto central, foi utilizado para estudar o efeito de diferentes concentrações de amido e sorbitol nas propriedades do filme. Os filmes de amido de açafrão preto, modificados por fosfatação, foram analisados quanto à atividade de água, permeabilidade a vapor d'áqua, força de ruptura, e solubilidade em áqua. Todos os filmes de amido modificado apresentaram superfície homogênea com ausência de bolhas ou partículas insolúveis. A atividade de água dos filmes variou de 0,48 a 0,55, mas não foi afetada significativamente pelo amido e o sorbitol. Para a permeabilidade ao vapor de água, houve interação significativa (p<0,05) entre o amido e sorbitol, indicando que os dois afetaram a permeabilidade dos filmes, onde estes variaram de 2,02 % a 1,05 %. A variável solubilidade foi afetada significativamente (p<0,05) pelo amido, aumentando a solubilidade com o aumento da concentração de amido fosfatado no filme, variando de 54,39 a 72,44 %. A concentração de amido fosfatado e sorbitol afetaram a força máxima de ruptura do filme, com interação significativa (p<0,05). Quanto maior a concentração de amido e sorbitol, maior foi força do filme (7,18 a 27,20

¹ Universidade Estadual de Goiás, oli.aryane@outlook.com

² Universidade Federal de Goias, jenyfferkaroline@gmail.com

³ Universidade Federal de Goiás, careli.gyn@hotmail.com ⁴ Universidade Federal de Goiás, allineribeiroqi@gmail.com

^{*} Universidade Federal de Goias, allineribeiroqi@gmail.com ⁵ Universidade Federal de Goiás, mssoaresjr@hotmail.com

⁶ Universidade Federal de Goiás, macaliari@ufg.br

N). É possível concluir que é possível a utilização de amido de açafrão preto fosfatado para produção de filmes comestíveis, podendo ser eficiente para aplicação em produtos pós colheita, garantindo-lhes integridade até a chegada ao consumidor final.

PALAVRAS-CHAVE: filme comestível, Casting, fosfatação, sorbitol, amido

Universidade Estadual de Goiás, oli.aryane@outlook.com
 Universidade Federal de Goiás, jenyfferkaroline@gmail.com
 Universidade Federal de Goiás, careli.gyn@hotmail.com
 Universidade Federal de Goiás, allineribeiroqi@gmail.com
 Universidade Federal de Goiás, mscoaresjr@hotmail.com
 Universidade Federal de Goiás, macaliari@ufg.br